- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Pavone, M (1)
-
Solovey, K (1)
-
Tsao, M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We study fundamental theoretical aspects of probabilistic roadmaps (PRM) in the finite time (non-asymptotic) regime. In particular, we investigate how completeness and optimality guarantees of the approach are influenced by the underlying deterministic sampling distribution $${\X}$$ and connection radius $${r>0}$$. We develop the notion of $${(\delta,\epsilon)}$$-completeness of the parameters $${\X, r}$$, which indicates that for every motion-planning problem of clearance at least $${\delta>0}$$, PRM using $${\X, r}$$ returns a solution no longer than $${1+\epsilon}$$ times the shortest $${\delta}$$-clear path. Leveraging the concept of $${\epsilon}$$-nets, we characterize in terms of lower and upper bounds the number of samples needed to guarantee $${(\delta,\epsilon)}$$-completeness. This is in contrast with previous work which mostly considered the asymptotic regime in which the number of samples tends to infinity. In practice, we propose a sampling distribution inspired by $${\epsilon}$$-nets that achieves nearly the same coverage as grids while using significantly fewer samples.more » « less
An official website of the United States government

Full Text Available